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 CHAPTER TEN 
 

SEMICONDUCTOR PHYSICS 
 
 
In this chapter,  a brief description of the basic concepts governing the flow of 
current in a pn junction are discussed.  Both intrinsic and extrinsic semicon-
ductors are discussed.   The characteristics of depletion and diffusion capaci-
tance are explored through the use of example problems solved  with  
MATLAB.  The effect of doping concentration on the breakdown voltage of 
pn junctions is examined.    
 
 

10.1 INTRINSIC SEMICONDUCTORS 
 
 
10.1.1 Energy  bands 
 
According to the planetary  model of an isolated atom, the nucleus that con-
tains protons and neutrons constitutes most of the mass of the atom.  Electrons 
surround the nucleus in specific orbits.  The electrons are negatively charged 
and the nucleus is positively charged.  If an electron absorbs energy  (in the 
form of a photon), it moves to orbits further from the nucleus.  An electron 
transition from a higher energy orbit to a lower energy orbit emits a photon for 
a direct band gap semiconductor. 
 
The energy levels of the outer electrons form energy bands.  In insulators, the 
lower energy band (valence band) is completely filled and the next energy 
band (conduction band) is completely empty.  The valence and conduction 
bands are separated by a forbidden energy gap.   
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 Figure 10.1  Energy Level Diagram of (a) Silicon, (b) Germanium,
   and  (c ) Insulator (Carbon) 
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In conductors, the valence band partially overlaps the conduction band with no 
forbidden energy gap between the valence and conduction bands.   In semicon-
ductors the forbidden gap is less than 1.5eV.  Some semiconductor materials 
are silicon (Si), germanium (Ge), and gallium arsenide (GaAs).  Figure 10.1 
shows the energy level diagram of silicon, germanium and insulator (carbon). 

 
  
10.1.2 Mobile carriers 
 
Silicon is the most commonly used semiconductor material in the integrated 
circuit industry.  Silicon has four valence electrons and its atoms are bound to-
gether by covalent bonds.  At absolute zero temperature the valence band is 
completely filled with electrons and no current flow can take place.  As  the 
temperature of a silicon crystal is raised, there is increased probability of 
breaking covalent bonds and freeing electrons.  The vacancies left by the freed 
electrons are holes.  The process of creating free electron-hole pairs is called 
ionization.  The free electrons move in the conduction band.  The average 
number of carriers (mobile electrons or holes) that exist in an intrinsic semi-
conductor material may be found from the mass-action law: 
 
 n AT ei

E kTg= −1 5. [ /( )]      (10.1) 
 
where 
  
 T is the absolute temperature in oK 
 

k  is Boltzmann’s constant   ( k   = 1.38 x 10-23 J/K or 8.62x10-5  
     eV/K ) 
 

E g   is  the width of the forbidden gap in eV.   E g   is 1.21 and  
          1.1eV for Si at 0oK and 300oK, respectively.  It is given as 
 
  E E Eg c v= −      (10.2) 
 
 A is a constant dependent on a given material and it is given as 
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where 
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h is Planck’s constant  (h = 6.62 x 10-34 J s   or 4.14 x 10-15 eV s). 
 
 mo is the rest mass of an electron 
 
 mn*  is the effective mass of an electron in  a material 
 
 mp*  is effective mass of a hole in a material 
 
 
The mobile carrier concentrations are dependent on the width of the energy 
gap, Eg ,  measured with respect to the thermal energy kT.    For small values 

of  T ( kT << E g  ),  ni  is  small implying, there are less  mobile carriers.   
For silicon, the equilibrium intrinsic concentration at room temperature is 
 
 ni   = 1.52 x 1010  electrons/cm3    (10.4) 
 
Of the two carriers that we find in semiconductors, the electrons have a higher 
mobility than  holes.   For example, intrinsic silicon at  300oK  has  electron 
mobility  of 1350 cm2 / volt-sec and hole mobility of  480 cm2 / volt-sec.   The 
conductivity of an intrinsic semiconductor is given by 
 
 σ µ µi i n i pq n p= +( )      (10.5) 
 
where 
   
 q is the electronic charge (1.6 x 10-19 C) 
 ni   is the electron concentration 
 pi  is the hole concentration. pi = ni  for the intrinsic  

semiconductor 
µn  electron mobility in the semiconductor material 

 µp  hole mobility in the semiconductor material. 
 
Since electron mobility is about three times that of hole mobility in silicon, the 
electron current is considerably more than the hole current.   The following ex-
ample illustrates the dependence of electron concentration on temperature. 
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Example 10.1 
 
Given that at T = 300 oK, the electron concentration in silicon  is 1.52 x 1010 

electrons /cm3  and E g  = 1.1 eV at  300 oK.  

(a)    Find the constant A  of  Equation (10.1).    
(b)    Use MATLAB to plot the electron concentration versus temperature. 
 
 
Solution 
 
From Equation (10.1), we have 
 

 152 10 30010 1 5 1 1 300 8 62 10 5

. ( ) . [ . / * . * )]x A e= − −

 
 
We use MATLAB to solve for A.    The width of energy gap with temperature 
is given as [1]. 
 

 E T x
T

Tg ( ) . .= −
+







−117 4 37 10

636
4

2

    (10.6) 

 
Using Equations (10.1) and (10.6), we can calculate the electron concentration 
at various temperatures. 
 
 
MATLAB Script 
 

% 
% Calculation of the constant A 
diary ex10_1.dat 
k = 8.62e-5;  
na = 1.52e10;   ta = 300; 
ega = 1.1; 
ka  = -ega/(k*ta); 
t32a = ta.^1.5; 
A = na/(t32a*exp(ka)); 
fprintf('constant A is %10.5e \n', A) 

 
% Electron Concentration vs. temperature 
 
for i = 1:10 
   t(i) = 273 + 10*(i-1); 
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   eg(i) = 1.17 - 4.37e-4*(t(i)*t(i))/(t(i) + 636); 
   t32(i) = t(i).^1.5; 
   ni(i) = A*t32(i)*exp(-eg(i)/(k*t(i))); 
end 
semilogy(t,ni) 
title('Electron Concentration vs. Temperature') 
xlabel('Temperature, K') 
ylabel('Electron Concentration, cm-3') 

 
 
Result for part (a) 
 

constant A is 8.70225e+024  
 
Figure 10.2 shows the plot of the electron concentration versus temperature. 
 
 

 
 
 Figure 10.2  Electron Concentration versus Temperature 
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10.2 EXTRINSIC SEMICONDUCTOR 
 
 
10.2.1  Electron and hole concentrations 
 
Extrinsic semiconductors are formed by adding specific amounts of impurity 
atoms to the silicon crystal.  An n-type semiconductor is formed by doping the 
silicon crystal with elements of group V of the periodic table (antimony, arse-
nic, and phosphorus).  The impurity atom is called a donor.  The majority car-
riers are electrons and the minority carriers are holes.  A p-type semiconductor 
is formed by doping the silicon crystal with elements of group III of the peri-
odic table (aluminum, boron, gallium, and indium).  The impurity atoms are 
called acceptor  atoms.  The majority carriers are holes and minority carriers 
are electrons. 
 
In a semiconductor material (intrinsic or extrinsic), the law of mass action 
states that 
 
 pn   = constant      (10.7) 
 
where 
  
 p    is the hole concentration 
 n  is the electron concentration. 
 
 
For intrinsic semiconductors, 
 
 p n ni= =       (10.8) 
 
and Equation (10.5) becomes 
 
 pn ni= 2       (10.9) 
 
and    ni   is given by Equation (10.1). 
 
 
The law of mass action enables us to calculate the majority and minority car-
rier density in an extrinsic semiconductor material.  The charge  neutrality 
condition of a semiconductor implies that 
 
 p N n ND A+ = +                     (10.10) 
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where 
 N D       is the donor concentration 

N A       is the acceptor concentration 
p       is the hole concentration 

 n        is the electron concentration. 
 
 
In  an n-type semiconductor, the donor concentration is greater than the intrin-
sic electron  concentration, i.e., N D  is typically 1017 cm-3  and   ni  = 1.5 x 
1010   cm-3  in Si at room temperature.  Thus,  the majority and minority concen-
trations are given by 
 
 n Nn D≅                   (10.11) 

 p
n
N

i

D
≅

2

                    (10.12) 

 
In a p-type semiconductor, the acceptor concentration  N A    is greater than the 
intrinsic hole concentration   p ni i= .  Thus, the majority and minority con-
centrations are given by 
 
 p Np A≅                  (10.13) 
 

 n
n
N

i

A
≅

2

                    (10.14) 

 
The following example gives the minority carrier as a function of doping con-
centration. 
 
 
Example 10.2 
 
For an n-type semiconductor at 300oK, if the doping concentration is varied 
from 1013  to 1018  atoms/cm3, determine the  minority carriers in the doped 
semiconductors. 
 
Solution 
 
From Equation (10.11) and (10.12),  
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Electron concentration =  N D   and  

Hole concentration = 
n
N

i

D

2

  

where 
 ni  = 1.5 2 x 1010    electrons/cm3 

 

The MATLAB program is as follows: 
 

% hole concentration in a n-type semiconductor 
nd = logspace(13,18); 
n = nd; 
ni = 1.52e10; 
ni_sq = ni*ni; 
p = ni_sq./nd; 
semilogx(nd,p,'b') 
title('Hole concentration') 
xlabel('Doping concentration, cm-3') 
ylabel('Hole concentration, cm-3') 

 
Figure 10.3 shows the hole concentration versus doping. 
 

 
 
 Figure 10.3   Hole Concentration in N-type Semiconductor (Si) 
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10.2.2 Fermi level 
 
The Fermi level, EF , is a chemical energy of a material.  It is used to describe 
the energy level of the electronic state at which an electron has the probability 
of 0.5 occupying that state.  It is given as 
 

 E E E KT
m
mF C V

n

p
= + −

1
2

4
3

( ) ln( )
*

*                (10.15) 

where 
 
 EC   =  energy in the conduction band 
 EV   =  energy in the valence band 
 and  k, T, mn*  and  mp*  were defined in Section  10.1. 
 
 
In an intrinsic  semiconductor  (Si and Ge)  mn* and mp*  are of the same order 
of magnitude and typically, EF  >> k T .    Equation (10.15) simplifies to 
 

 E E E EF i C V= ≅ +
1
2

( )                (10.16) 

 
Equation (10.16) shows that the Fermi energy occurs near the center of the en-
ergy gap in an intrinsic semiconductor.  In addition, the Fermi energy can be 
thought of as the average energy of mobile carriers in a semiconductor mate-
rial. 
 
In an  n-type semiconductor, there is a shift of the Fermi level towards the edge 
of the conduction band.  The upward shift is dependent on how much the 
doped electron density has exceeded the intrinsic value.  The relevant equation 
is 
 

 [ ]n n ei
E E kTF i= −( ) /                  (10.17) 

 
where 
 
 n    is the total electron carrier density 
 ni   is the intrinsic electron carrier density 
 EF  is the doped Fermi level 
 Ei   is the intrinsic Fermi level. 
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In the case of a p-type semiconductor, there is a downward shift in the Fermi 
level.  The total hole density will be  given by 
 

 [ ]p n ei
E E kTi F= −( ) /                 (10.18) 

 
Figure 10.4 shows the energy band diagram of intrinsic and extrinsic semicon-
ductors.  
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 Figure 10.4  Energy-band Diagram of  (a) Intrinsic,  (b) N-type, and  
   (c )  P-type Semiconductors. 
 
 
10.2.3 Current density and mobility 
 
Two mechanisms account for the movement of carriers in a semiconductor ma-
terial: drift and  diffusion.  Drift current is caused by the application of an elec-
tric field, whereas diffusion current is obtained when there is a net flow of car-
riers from a region of high concentration to a region of low concentration.  The 
total drift current density in an extrinsic semiconductor material is 
 
 J q n pn p= +( )µ µ Ε                 (10.19) 
 
where 
 J   is current density 
 n   is mobile electron density 
 p   is hole density, 
 µn   is mobility of an electron 
 µp   is mobility of a hole 
 q   is the electron charge 
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Ε   is the electric field. 
 
 
The total conductivity is 
 
 σ µ µ= +q n pn p( )Ε                 (10.20) 
 
Assuming that there is a diffusion of holes from an area of high concentration 
to  that of  low  concentration, then  the current  density of  holes  in  the  x- 
direction is 

 J qD
dp
dxp p= −  A/cm2               (10.21) 

where 
   
 q    is the electronic charge 
 Dp   is the hole diffusion constant 
 p   is the hole concentration. 
 
 
Equation (10.21) also assumes  that, although  the hole concentration varies 
along the x-direction,  it is constant in the y and z-directions.  Similarly, the 
electron current density, Jn ,  for diffusion of electrons is  

 J qD
dn
dxn n=  A / cm2                (10.22) 

 
where 
 Dn   is the electron diffusion constant 
 n   is the electron concentration. 
 
 
For silicon, Dp   = 13 cm2/s , and  Dn   =  200 cm2/s .  The diffusion and mo-
bility constants are related, under steady-state conditions, by the Einstein rela-
tion 
 

 
D D kT

q
n

n

p

pµ µ
= =                 (10.23) 

 
The following two examples show the effects  of doping concentration on mo-
bility and resistivity. 
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Example 10.3 
 
From measured data, an empirical relationship between electron (µn ) and hole 
( µp ) mobilities versus doping concentration at 300oK is given as [2] 
 

 µn D
D

D

N
x N

x N
( )

.
.

.

.=
+
+

51 10 92
375 10

18 0 91

15 0 91               (10.24) 

   
  

 µpn A
A

A

N
x N

x N
( )

. .
.

.

.=
+
+

2 9 10 47 7
586 10

15 0 76

12 0 76                    (10.25) 

  
where 
   
 N D   and N A   are donor and acceptor concentration per cm3,  
  respectively. 
 
Plot the µn ( N D  ) and µp ( N A  ) for  the doping concentrations from 1014 to 
1020  cm-3 . 
 
 
Solution 
 
MATLAB Script 
 

% nc - is doping concentration 
% 
nc = logspace(14,20); 
un = (5.1e18 + 92*nc.^0.91)./(3.75e15 + nc.^0.91); 
up = (2.90e15 + 47.7*nc.^0.76)./(5.86e12 + nc.^0.76); 
semilogx(nc,un,'w',nc,up,'w') 
text(8.0e16,1000,'Electron Mobility') 
text(5.0e14,560,'Hole Mobility') 
title('Mobility versus Doping') 
xlabel('Doping Concentration in cm-3') 
ylabel('Bulk Mobility (cm2/v.s)') 

 
Figure 10.5 shows the plot of mobility versus doping concentration. 
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 Figure 10.5  Mobility versus Doping Concentration 
 
 
 
Example 10.4 
 
At the temperature of 300oK, the resistivity of silicon doped by phosphorus is 
given as [ 3] 
 

 ρn
D

D D

x N
x N x N

=
+
+− −

375 10
147 10 815 10

15 0 91

17 1 91 1

.
. .

.

.                (10.26) 

 
A similar relation for silicon doped with boron is given as [ 4] 
 

 ρp
A

A A

x N
x N N

=
+
+− −

586 10
7 63 10 4 64 10

12 0 76

18 1 76 4

.
. . *

.

.              (10.27) 

 
where  
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N D  and N A  are donor and acceptor concentrations, respectively.   
 
Use MATLAB to plot the resistivity versus doping concentration (cm-3 ). 
 
 
 
Solution 
 
MATLAB Script 
 

% nc is doping concentration 
% rn - resistivity of n-type 
% rp - resistivity of p-type 
 
nc = logspace(14,20); 
rn = (3.75e15 + nc.^0.91)./(1.47e-17*nc.^1.91 + 8.15e-1*nc); 
rp = (5.86e12 + nc.^0.76)./(7.63e-18*nc.^1.76 + 4.64e-4*nc); 
 
semilogx(nc,rn,'w',nc,rp,'w') 
axis([1.0e14, 1.0e17,0,140]) 
title('Resistivity versus Doping') 
ylabel('Resistivity (ohm-cm)') 
xlabel('Doping Concentration cm-3') 
text(1.1e14,12,'N-type') 
text(3.0e14,50,'P-type') 

 
Figure 10.6 shows the resistivity of N- and P-type silicon. 
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 Figure 10.6  Resistivity versus Doping Concentration 
 
 
 
 
 

10.3  PN JUNCTION:  CONTACT POTENTIAL, JUNCTION  
 CURRENT 

 
 
10.3.1 Contact potential 
 
An ideal pn junction is obtained when a uniformly doped p-type material 
abruptly changes to n-type material.  This is shown in Figure 10.7. 
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x = 0
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(b)  
 
 Figure 10.7  Ideal pn Junction  (a) Structure,  (b) Concentration of  
   Donors ( N D ), and acceptor ( N A ) impurities. 
 
 
Practical pn junctions are formed by diffusing into an n-type semiconductor a 
p-type impurity atom, or vice versa.  Because the p-type semiconductor has 
many free holes and the n-type semiconductor has many free electrons, there is 
a strong tendency for the holes to diffuse from the p-type to the n-type semi-
conductors.  Similarly, electrons diffuse from the n-type to the p-type material.  
When holes cross the junction into the n-type material, they recombine with the 
free electrons in the n-type.  Similarly,  when electrons  cross the junction into 
the p-type region, they recombine with free holes.  In the junction a transition 
region or depletion region is created. 
 
In the depletion region, the free holes and electrons are many magnitudes 
lower than holes in p-type material and electrons in the n-type material.  As 
electrons and holes recombine in the transition region, the region near the junc-
tion within the n-type semiconductor is left with a net positive charge.  The re-
gion near the junction within the p-type material will be left with a net negative 
charge.  This is illustrated in Figure 10.8. 
 
Because of the positive and negative fixed ions at the transition region, an elec-
tric field is established across the junction.  The electric field creates a poten-
tial difference across the junction, the potential barrier.  The latter is also  
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called diffusion potential or contact potential, VC .  The potential barrier pre-
vents the flow of majority carriers across the junction under equilibrium condi-
tions. 
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Figure 10.8  pn Junction  (a) Depletion region with Positive and  

Negative Ions  (b)  Energy Band Diagram near a pn 
Junction. 

 
 

The contact potential, VC , may be obtained from the relations 
 

 
n
n

e
p
p

n

p

qV
kT p

n

C

= =




                 (10.28) 

or 

 V
kT
q

n
n

kT
q

p
pC

n

p

p

n
= =ln( ) ln( )                (10.29) 

  

But, noting that    p Np A≅ ,    n
n
Np

i

A
≅

2

,  n Nn D≅  , p
n
Nn

i

D
≅

2

,  

Equation (10.29) becomes  
 

V
kT
q

N N
nC
A D

i
= ln( )2                 (10.30) 
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The contact potential can also be obtained from the band-bending diagram of 
the pn junction shown in Figure 10.8.  That is, from Figure 10.8 
 

 V
E E

qC
in ip=
−

                (10.31) 

or 

 VC fn fp= − +( )φ φ                 (10.32) 

 
where  

φFN  and φFP  are the electron and hole  Fermi potentials,  
  respectively.  They are given as 
 

  φFN
F IN D

i

E E
q

kT
q

N
n

=
−

=






ln              (10.33) 

 and 

  φFP
F IP A

i

E E
q

kT
q

N
n

=
−

=






ln             (10.34) 

 
Using Equations (10.31) to (10.34), we have 
 

  V
kT
q

N N
nC
A D

i
=







ln 2                (10.35) 

 
It should be noted that Equations (10.30) and (10.35) are identical.   Typically, 
VC  is from 0.5 to 0.8 V for the silicon pn junction. For germanium, VC  is ap-
proximately 0.1 to 0.2, and that for gallium arsenide  is 1.5V. 
 
When a positive voltage VS  is applied to the  p-side of the junction and n-side 
is grounded, holes are pushed from the p-type material into the transition re-
gion.  In addition, electrons are attracted to transition region. The  depletion  
region decreases, and the effective contact potential is reduced.  This allows 
majority carriers to flow  through  the depletion region.  Equation (10.28) 
modifies to 
 

 
n
n

e
p
p

n

p

q V V
kT p

n

G S

= =
−





( )

                (10.36) 
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When a negative voltage VS  is applied to the p-side of a junction and the n-
side is grounded, the applied voltage adds directly to the contact potential.  
The depletion region increases and it become more difficult for the majority 
carriers to flow across the junction.  The current flow is mainly due to the flow 
of minority carriers.  Equation (10.28) modifies to 
 

 
n
n

e
p
p

n

p

q V V
kT p

n

C S

= =
+





( )

                (10.37) 

 
Figure 10.9 shows the potential across the diode when a pn junction is  
forward-biased and reversed-biased. 
 

P N

Vc
VS = 0

VC - VS VS > 0

VS < 0
VC + VS

VS

 
  

Figure 10.9   PN Junction (a) with Depletion Layer and Source  Con-
nection  (b) Contact Potential with No Source Voltage (VS   = 0)  (c ) 
Junction Potential for Forward-biased pn Junction (VS  > 0) and  (d) 
Junction Potential for Reversed-biased pn Junction  (VS  < 0) 

 

© 1999 CRC Press LLC 

 

© 1999 CRC Press LLC 



The following example illustrates the effect of source voltage on the junction 
potential. 
 
 
 
Example 10.5 
 
For a Silicon pn junction with N D   = 1014  cm-3  and N A   =  1017  cm-3  and 

with ni
2  =  1.04 x 1026  cm-6  at  T =  300 oK,   

 
(a)   Calculate the contact potential.   
 
(b)  Plot the junction potential when the source voltage VS  of Figure  
 10.9 increases from  -1.0 to 0.7 V. 
 
Solution 
 
MATLAB Script 
 

diary ex10_5.dat 
% Junction potential versus source voltage 
% using equation(10.36) contact potential is 
 
t = 300;  
na = 1.0e17;  
nd = 1.0e14;  
nisq = 1.04e20; 
q = 1.602e-19;  
k = 1.38e-23; 
 
% calculate contact potential 
vc = (k*t/q)*(log(na*nd/nisq)) 
vs = -1.0:0.1:0.7; 
jct_pot = vc - vs; 
 
% plot curve 
plot(vs,jct_pot) 
title('Junction potential vs. source voltage') 
xlabel('Source voltage, V') 
ylabel('Junction potential, V') 
diary 
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(a)  The contact potential is 
 

vc = 
       0.6535 

 
(b) Figure 10.10 shows the graph of the junction potential versus the source 
voltage. 
 
 

 
 
 Figure 10.10  Junction Potential versus  Source Voltage. 
 
 
 
10.3.2 Junction current 
 
 
The pn junction current is given as 
 

 I I es

qV
kT

S

= −
















 1                  (10.38) 

where 
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 VS  is the voltage across the pn junction  [see Figure 10.9 (a)] 
 q  is the electronic charge 
 T  is the absolute temperature 
 k  is Boltzmann’s constant 
 I S  is reverse saturation current.  It is given as 
 

  I qA
D p

L
D n

LS
p n

p

n p

n
= +( )                (10.39) 

where 
 
 A    is the diode cross-sectional area 
    Lp , Ln   are the hole and electron diffusion lengths 

  p nn p,    are the equilibrium minority carrier concentrations 

  D Dp n,   are the hole and electron diffusion coefficients,  
    respectively. 
 

Since   p
n
Nn

i

D
≅

2

 and  n
n
Np

i

A
≅

2

, Equation  (10.39)  becomes 

  

I qA
D

L N
D

L N
nS

p

p D

n

n A
i= +











2                 (10.40) 

  
The diffusion coefficient and diffusion length are related by the expression 
 
  L Dp p p= τ                         (10.41) 

 
and 

  L Dn n n= τ                   (10.42) 
 
where 
    
  τ τp n,   are the hole minority and electron minority carrier lifetime,  
     respectively. 
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Equation (10.38) is the diode equation.  It is applicable for forward-biased 
(VS  > 0 ) and reversed-biased (VS   < 0 ) pn junctions. 
   
 
Using Equations (10.1) and (10.39), the reverse saturation current can  
be rewritten as 
 

  [ ]I k T eS
E kTg= −

1
3 /( )

                (10.43) 
    
where k1  is a proportionality constant 
 

  
dI
dT

k T e k T
E

kT
eS

E
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E
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3 1
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1
3
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Thus 
 

  
1 3 1 3 1
I

dI
dT T T

E
kT T T

V
VS

S g g

T
= + = +                (10.44) 

  
where 
 

 V
kT
qT =         and V

E
qg

g=  

 
For silicon at room temperature,  
 

  
V
V

g

T
= 44 4. .   

Thus 

 
dI
dT

V
V

dT
T

dT
T

S g

T
= + =( ) .3 47 4                 (10.45) 

 
At room temperature (300o K),  the saturation current approximately doubles 
every 5o C [5].    The following example shows how I S  is affected by tem-
perature. 
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Example 10.6 
 
A silicon diode has I S   =  10-15 A at 25o C and assuming I S  increases by 
15%  per  oC rise in temperature, find and plot the value of I S  from 25 oC to  
125 oC. 
 
Solution 
 
From the information given  above, the reverse saturation current can be ex-
pressed as 
 

 ( )( )I S
T= − −10 11515 25.  

 
MATLAB is used to find  I S  at various temperatures. 
 
 
MATLAB Script 
 

% Saturation current 
% 
 
t = 25:5:125; 
is = 1.0e-15*(1.15).^(t-25); 
 
plot(t,is) 
title('Reverse Saturation Current vs. Temperature') 
xlabel('Temperature, C') 
ylabel('Current, A') 

 
 
Figure 10.11 shows the effect of temperature on  the reverse saturation current. 
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 Figure 10.11  Reverse Saturation Current versus Temperature 
 
 
 
 
10.4 DEPLETION AND DIFFUSION CAPACITANCES 
 
 
10.4.1 Depletion capacitance 
 
As mentioned previously, a pn junction is formed when a p-type material is 
joined to an n-type region.  During device fabrication, a p-n junction can be 
formed using process such as ion-implantation diffusion or epitaxy.  The dop-
ing profile at the junction can take several shapes.   Two popular doping pro-
files are abrupt (step) junction and linearly graded junction. 
 
In the abrupt junction, the doping of the depletion region on either side of the 
metallurgical junction is a constant.  This gives rise to constant charge densi-
ties on either side of  the junction.  This is shown in Figure 10.12. 
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Figure 10.12        PN  Junction with Abrupt Junction  (a) Depletion  
Region   (b) Charge Density   (c ) Electric Field and  
(d) Potential Distribution 

 
 
 
For charge equality, 
 
 qN W qN WA P D N=                              (10.46) 
 
it can be shown [6] that the depletion width in the p-type (WP ) and that of the 
n-type material (WN ) can be given as 
 

 W
N V V

qN N NP
D C s

A D A
=

−
+

2ε ( )
( )

                (10.47) 
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 W
N V V

qN N NN
A C s

D D A
=

−
+

2ε ( )
( )

                (10.48) 

 
where 
 
 ε    is the relative dielectric constant 
       (ε ε= 12 0   for Si,  and  ε0   =  8.85 x 10-12 F/m) 
 N D    is donor concentration 

N A    is acceptor concentration 
 q    is electronic charge 
 VC    is contact potential obtained from Equation (10.30) 
 VS    is source voltage. 
 
 
If the doping density on one side of the metallurgical junction is greater than 
that on the other side (i.e., N A  >> N D   or N D  >> N A  ) , then the junction 
properties are controlled entirely by the lightly doped side.  This condition is 
termed  the one-sided step junction approximation.  This is the practical model 
for shallow junctions formed by a heavily doped diffusion into a lightly doped 
region of opposite polarity [7]. 
 
In a linearly graded junction, the ionized doping charge density varies linearly 
across the depletion region.  The charge density passes through zero at the 
metallurgical junction.  Figure 10.13 shows the profile of the linearly graded 
junction. 
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Figure 10.13        PN Junction with Linearly Graded Junction  

(a)  Depletion Region   (b) Charge Density    
(c ) Electric Field   (d) Potential Distribution 

 
 
For a linearly graded junction, the depletion width in the p-type and n-type ma-
terial, on either side of the metallurgical junction, can be shown to be 
 

 W W
V V
qaN P
C S= =
−









12
1
3

ε( )
               (10.49) 

 
where 
 
 a  is the slope of the graded junction impurity profile. 
 
The contact potential is given as [6] 
 

 V
kT
q

aW
nC

N

i
= ln( )

2
                 (10.50) 

  
The depletion capacitance, C j , is due to the charge stored in the depletion re-
gion.  It is  generally given as 
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 C
A

Wj
T

=
ε

                  (10.51) 

where  
 

 W W WT N P= +                      (10.52) 
 

A    is cross-sectional area of the pn junction. 
 
 
 
For abrupt junction, the depletion capacitance is given as 
 

 C A
qN N

N N V Vj
A D

D A C S
=

+ −
ε

2( )( )
               (10.53)

   
 
For linearly graded junction, the depletion capacitance is given as 
 

 C aq A V Vj C S= −
−

0 436
1

3
2

3
1

3. ( ) ( )ε   
 

 C A
aq

V Vj
C S

=
−

0 436
2

1
3. [

( )
]

ε
                 (10.54) 

 
In general, we may express the depletion capacitance of a pn junction by 
 

 C
C

V
V

j
j

S

C

m=

−










0

1

 
1
3

1
2

≤ ≤m                             (10.55) 

  
where 

 m =
1
3

   for linearly graded junction and 

 m =
1
2

 for step junction 
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 C j0  =  zero-biased junction capacitance.  It can be obtained from  

  Equations (10.53) and (10.54) by setting VS   equal to zero. 
 
 
Equations (10.53 to 10.55) are, strictly speaking, valid under the conditions of 
reversed-biased VS  < 0.  The equations  can, however, be used when VS  < 
0.2V.  The positive voltage, VC  , is the contact potential of the pn junction.  
As the pn junction becomes more reversed biased (VS  < 0),  the depletion ca-
pacitance decreases.  However, when the pn junction becomes slightly forward 
biased, the capacitance increases rapidly.  This is illustrated by the following 
example. 
 
 
 
Example 10.7 
 
For a certain pn junction, with contact potential 0.065V, the junction capaci-
tance is 4.5 pF for VS   =  -10 and  C j   is 6.5 pF for VS   = -2 V.   

(a) Find  m and C j0  of Equation (10.55).   
(b) Use MATLAB to plot the depletion capacitance from -30V to 0.4V. 
 
 
Solution 
  
From Equation (10.55)  

 C
C
V
V

j
j

S

C

m
1

0

11
=

−[ ]
 

 C
C
V
V

j
j

S

C

m
2

0

21
=

−[ ]
 

therefore 
 

 
C
C

V V
V V

j

j
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C S

m
1

2

2

1
=
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1

                   (10.56) 

and 

 C C
V
Vj j

S

C

m

0 1
11= −









                  (10.57) 

 
MATLAB is used to find m and C j0 .  It is also used to plot the depletion ca-
pacitance. 
 
 
MATLAB Script 
 

% depletion capacitance 
% 
cj1 = 4.5e-12; vs1 = -10; 
cj2 = 6.5e-12; vs2 = -2; 
vc = 0.65; 
 
num = cj1/cj2; 
den = (vc-vs2)/(vc-vs1); 
m = log10(num)/log10(den); 
cj0 = cj1*(1 - (vs1/vc))^m; 
vs = -30:0.2:0.4; 
k = length(vs); 
for i = 1:k 
 cj(i) = cj0/(1-(vs(i)/vc))^m; 
end 
plot(vs,cj,'w') 
xlabel('Voltage,V') 
ylabel('Capacitance,F') 
title('Depletion Capacitance vs. Voltage') 
axis([-30,2,1e-12,14e-12]) 

 
 
(a)  The values of  m C j, 0  are 

m  = 
         0.02644 
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cj0  = 
          9.4246e-012 

 
 
(b) Figure 10.14 shows the depletion capacitance versus the voltage across the 
junction. 
 
 

 
 
 Figure 10.14  Depletion Capacitance of a pn Junction 
 

10.4.2 Diffusion capacitance 

When a pn junction is forward biased, holes are injected from the p-side of the 
metallurgical junction into the n-type material.  The holes are momentarily 
stored in the n-type material before they recombine with the majority carriers 
(electrons) in the n-type material.  Similarly, electrons are injected into and 
temporarily stored in the p-type  material. The electrons then recombine with 
the majority carriers (holes) in the p-type material.  The diffusion capacitance, 
Cd , is due to the buildup of minority carriers charge around the metallurgical  
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junction as the result of forward biasing the pn junction.  Changing the forward 
current or forward voltage, ∆V, will result in the change in the value of the 
stored charge ∆Q,  the diffusion capacitance, Cd , can be found from the gen-
eral expression 
 

 C
Q
Vd =
∆
∆

                  (10.58) 

 
It turns out that the diffusion capacitance is proportional to the forward-biased 
current.   That is 
 
 C K Id d DF=                   (10.59) 
  
where 
 Kd   is constant at a given temperature 
 I DF   is  forward-biased diode current. 
 
 
The diffusion capacitance is usually larger than the depletion capacitance [1, 
6].  Typical values of Cd   ranges from 80 to 1000 pF. 
 
 
A small signal model of the diode is shown in Figure 10.15. 
 

  

Cd

Cj

Rsrd

 
 
 Figure 10.15   Small-signal Model of a Forward-biased pn Junction 
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In Figure 10.15, Cd   and C j  are the diffusion and depletion capacitance, re-

spectively.    RS   is the semiconductor bulk and contact resistance.   The  dy-
namic resistance, rd , of the diode  is given as 
 

 r
nkT
qId

DF
=                   (10.60) 

  
where 
 n     is  constant 
 k     is  Boltzmann’s constant 
  T   is  temperature in degree Kelvin 

q   is  electronic charge. 
 
When a pn junction is reversed biased, Cd  = 0.  The model of the diode is 
shown in Figure 10.16. 

  

Cj

Rs

Rd  
 
 Figure 10.16  Model of a Reverse-biased pn Junction 
 
 
In Figure 10.16, C j   is the depletion capacitance.  The diffusion capacitance is 
zero.  The resistance Rd  is reverse resistance of the pn junction (normally in 
the mega-ohms range). 
 
 
 
Example 10.8 
 
A certain diode has contact potential; VC  = 0.55V,  C j0  =  diffusion capaci-
tance at zero biased is   8 pF;  the diffusion capacitance at 1mA is 100 pF.   
Use MATLAB to plot the diffusion and depletion capacitance for forward- bi-
ased voltages from 0.0 to 0.7 V.  Assume that I S = 10-14 A,  n = 2.0  and step-
junction profile. 
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Solution 
 
Using Equations  (10.38) and (10.59), we write the MATLAB program to ob-
tain the diffusion and depletion capacitance. 
 
MATLAB Script 
 

% 
% Diffusion and depletion Capacitance 
% 
cd1 = 100e-12; id1 = 1.0e-3; cj0 = 8e-12; vc =0.55; 
m = 0.5; 
is = 1.0e-14; nd = 2.0; 
k = 1.38e-23; q = 1.6e-19; T = 300; 
kd = cd1/id1; 
vt = k*T/q; 
v = 0.0:0.05:0.55; 
nv = length(v); 
 
for i = 1:nv 
 id(i) = is*exp(v(i)/(nd*vt)); 
 cd(i) = kd*id(i); 
 ra(i) = v(i)/vc; 
 cj(i) = cj0/((1 - ra(i)).^m); 
end 
 
subplot(121) 
plot(v,cd) 
title('Diffusion Cap.') 
xlabel('Voltage, V'), ylabel('Capacitance, F') 

 
subplot(122) 
plot(v,cj) 
title('Depletion Cap.') 
xlabel('Voltage, V'), ylabel('Capacitance, F') 

 
 
Figure 10.17 shows the depletion and diffusion capacitance of a forward- 
biased pn junction. 
 

 

© 1999 CRC Press LLC 

 

© 1999 CRC Press LLC 



 
 
  (a)     (b) 
 
 Figure 10.17  (a) Depletion and (b) Diffusion Capacitance 
 
 
 
 
10.5 BREAKDOWN VOLTAGES OF PN JUNCTIONS 
 
The electric field E is related to the charge density through the Poisson’s equa-
tion 
 

 
dE x

dx
x

S

( ) ( )
=
ρ
ε ε0

                 (10.61) 

  
where 
 εS     is the semiconductor dielectric constant 
 ε0   is the permittivity of free space, 8.86 * 10-14  F/cm 
 ρ( )x  is the charge density. 
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For an abrupt junction with charge density  shown in Figure 10.12, the charge 
density 
 

 
ρ( )x qN W x

qN x W
A P

D N

= − − < <
= < <

0
0                (10.62) 

 
The maximum electric field 
 

 E
qN W qN WA P

s

D N

s
max = =

ε ε ε ε0 0
                (10.63)

  
 
Using Equation (10.47) or (10.48, Equation (10.63) becomes 
 

 E
qN N V V

N N
D A C S

S A D
max

( )
( )

=
−

+
2

0ε ε
               (10.64) 

For a linearly graded junction, the charge density, ρ( )x is given as (see Figure 
10.13) 

 ρ( )x ax=   − < <
W

x
W

2 2
               (10.65) 

and the maximum electric field can be shown to be 
 

 E
aq

W
S

max =
8 0

2

ε ε
                 (10.66) 

  
where 
 a   is  slope of charge density 
 W   is  width of depletion layer and 
 

  
W

W WN P2
= =  

 
The width of the depletion region, W, can be obtained from Equation (10.49). 
 
Equation (10.64) indicates that as the reverse voltage increases, the magnitude 
of the electric field increases.  The large electric field accelerates the carriers 
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crossing the junction.  At a critical field, Ecrit , the accelerated carriers in the 
depletion region have sufficient energy  to  create new electron-hole pairs as 
they collide with other atoms.   The secondary electrons can in turn create 
more carriers in the depletion region.  This is termed the avalanche breakdown 
process.  For silicon with an impurity concentration of 1016 cm-3, the critical 
electric field is about 2.0x105 V/cm. 
 
In a highly doped pn junctions, where the impurity concentration is about 1018  
cm-3 , the critical electric field is about 106 V/cm.  This high electric field is 
able to strip electrons away from the outer orbit of the silicon atoms, thus cre-
ating hole-electron pairs in the depletion region.  This mechanism of break-
down is called zener breakdown.  This breakdown mechanism does not involve 
any multiplication effect.  Normally, when the breakdown voltage is less than 
6V, the mechanism is zener breakdown process.  For breakdown voltages be-
yond 6V, the mechanism is generally an avalanche breakdown process. 
 
For an abrupt junction, where one side is heavily doped, the electrical proper-
ties of the junction are determined by the lightly doped side.  Experimentally, 
the breakdown voltage of semiconductor step junction ( n+p or p+n ) as the 
function of doping concentration in the lightly doped side is given as [7]  
 

 V k
N

BR
B=






−

1016

0 75.

                 (10.67) 

  
where 
 
 k     =  25V  for Ge 
                     =  60V for Si 
  
and 
 N B   is the doping concentration of lightly doped side. 
 
 
The following example shows the effect of doping concentration on breakdown 
voltage. 
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Example 10.9 
 
Use MATLAB to plot the breakdown voltage versus doping concentration for 
a one-sided step junction for silicon and germanium, and  using doping con-
centration from 1014 to 1019 cm-3. 
 
Solution 
 
Using Equation (10.67),  we calculate the breakdown voltage for various dop-
ing concentration. 
 
 
MATLAB Script 
 

% 
% Breakdown voltage 
% 
k1 = 25; 
 k2 = 60; 
nb = logspace(14,19); 
n = length(nb); 
 
for i = 1:n 
 vbr1(i) = k1*(nb(i)/1.0e16)^(-0.75); % Ge breakdown voltage 
 vbr2(i) = k2*(nb(i)/1.0e16)^(-0.75); % Si breakdown voltage 
end 

 
semilogx(nb,vbr1,'w', nb,vbr2,'w') 
xlabel('Impurity Concentration, cm-3') 
ylabel('Breakdown Voltage,V') 
title('Breakdown Voltage vs. Impurity Concentration') 
axis([1.0e14,1.0e17,0,2000]) 
text(2.0e14,270,'Ge') 
text(3.0e14,1000,'Si') 

 
Figure 10.18 shows the plot of breakdown voltage of one-sided abrupt junc-
tion. 
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 Figure 10.18  Breakdown Voltage versus Impurity Concentration 
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EXERCISES  
 
10.1 In the case of silicon  for temperature below 700 oK,  the density of  
 intrinsic created carriers, ni , can be approximated as [8] 
 

  n T ei
T=

−










387 1016 3
2

7 02 103

. *
. *

               (10.68) 
 
 (a) Use  MATLAB to plot the intrinsic carrier concentration  
  versus (1000/T) where T is temperature in degrees Kelvin. 
 (b) Compare the above relation for intrinsic concentration with  

that of  Example 10.1. Plot  the difference between of  ni  
for  Equations (10.1) and (10.68). 

 
 
10.2 Assuming that at 300 oK the mobile carrier concentrations of intrinsic  

germanium and silicon semiconductor materials are 2.390*1013 and 
1.52*1010 , respectively, use MATLAB to plot the E EF i−  versus 
donor concentration for Ge and Si.  Assume donor concentrations 
from 1010  to 1018. 
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10.3 For power devices with breakdown voltages above 100V and  
resistivities greater than 1 ohm-cm  (n-type silicon) and 3 ohm-cm (p-
type silicon), the resistivity versus doping concentrations can be sim-
plified to 
 

  ρn DN= −4 596 1015 1. *  
 
  ρpn AN= −1263 1016 1. *  
  
 (a) Use MATLAB to plot resistivity versus doping  concentration  
  (from 1012  to 1018  cm-3 ). 
 (b) Compare your results with those obtained in Example 10.4. 
 
 
10.4 For Ge pn junction with N A   = 1018 cm-3 , N D   = 1015 cm-3  and ni    
 at 300 oK is 2.39*1013 ,  
 

(a)  Calculate the contact potential.  
(b)  Plot the junction potential for source voltages of -1.0V  to 0.3V. 

 
 
10.5 For the small signal model of the forward-biased pn junction, shown  

in Figure 10.15, RS  = 5Ω,  rd  = 10 Ω, Cd  = 110 pF at I DF  of  1 
mA.  Use MATLAB to plot the equivalent input impedance (magni-
tude and phase) for frequencies from 104 to 1010 Hz. 

  
 
10.6 Empirically, the breakdown voltage of a linearly graded junction can  
 be approximated as [9] 

V k
a

BR =










− −4

21

0 75

10

.

  

 
where   k  = 18 V for Ge  or 40 V for Si. 
 
Use MATLAB to plot the breakdown voltage vs. impurity gradient of 
Ge and Si.  Use impurity gradient values from 1019 to 1024.  
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